
CS103 Handout 35
Spring 2017 May 19, 2017

Problem Set 7

What can you do with regular expressions? What are the limits of regular languages? In this prob-
lem set, you'll explore the answers to these questions along with their practical consequences.

As always, please feel free to drop by office hours, ask on Piazza, or send us emails if you have any
questions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, May 26 at the start of class.

Problem One: Designing Regular Expressions
Below are a list of alphabets and languages over those alphabets. For each language, write a regular ex-
pression for that language.

Please use our online tool to design, test, and submit your regular expressions. Typed or handwritten
solutions will not be accepted. To use it, visit the CS103 website and click the “Regex Editor” link under
the “Resources” header. As before, if you submit in a pair, please make a note in your GradeScope sub-
mission of which partner submitted your answers to this question so that we know where to look. Also, as
a reminder, please test your submissions thoroughly, since we'll be grading them with an autograder.

i. Let Σ = {a, b} and let L = { w ∈ Σ* | w does not contain ba as a substring }. Write a regular ex-
pression for L.

ii. Let Σ = {a, b} and let L = { w ∈ Σ* | w does not contain bb as a substring }. Write a regular ex-
pression for L.

iii. Suppose you are taking a walk with your dog on a leash of length two. Let Σ = {y, d} and let
L = { w ∈ Σ* | w represents a walk with your dog on a leash where you and your dog both end up
at the same location }. For example, the string yyddddyy is in L because you and your dog are
never more than two steps apart and both of you end up four steps ahead of where you started;
similarly, ddydyy ∈ L. However, yyyyddd ∉ L, since halfway through your walk you are three
steps ahead of your dog; ddyd ∉ L, because your dog ends up two steps ahead of you; and the
string ddyddyyy ∉ L, because at one point in your walk your dog is three steps ahead of you.
Write a regular expression for L.

iv. Let Σ = {a, b} and let L = { w ∈ Σ* | w ≠ ab }. Write a regular expression for L.

v. Let Σ = {M, D, C, L, X, V, I} and let L = { w ∈ Σ* | w is number less than 2,000 represented in Ro-
man numerals }. For example, CMXCIX ∈ L, since it represents the number 999, as are the strings
L (50), VIII (8), DCLXVI (666), CXXXVII (137), CDXII (412), and MDCXVIII (1,618). However,
we have VIIII ∉ L (you'll never have four I's in a row; use IX or IV instead), that MMI ∉ L (it's a
Roman numeral, but it's for 2,001, which is too large), that VX ∉ L (this isn't a valid Roman nu-
meral), and that IM ∉ L (the notation of using a smaller digit to subtract from a larger one only lets
you use I to prefix V and X, or X to prefix L and C, or C to prefix D and M). The Romans didn't have
a way of expressing the number 0, so to make your life easier we'll say that ε ∈ L and that the
empty string represents 0. (Oh, those silly Romans.) Write a regular expression for L.

(As a note, we’re using the “standard form” of Roman numerals. You can see a sample of num-
bers written out this way via this link.)

Problem Two: Finite and Cofinite Languages
A language L is called finite if L contains finitely many strings. More precisely, a language L is a finite
language if |L| is a natural number. A language L is called cofinite if its complement is a finite language;
that is, L is cofinite if |L| is a natural number.

i. Prove that any finite language is regular.

ii. Prove that any cofinite language is regular.

http://literacy.kent.edu/Minigrants/Cinci/romanchart.htm

Problem Three: State Elimination
The state elimination algorithm gives a way to transform a finite automaton (DFA or NFA) into a regular
expression. It's a really beautiful algorithm once you get the hang of it, so we thought that we'd let you try
it out on a particular example.

Let Σ = {a, b} and let L = { w ∈ Σ* | w has an even number of a's and an even number of b's}. Below is a
finite automaton for L that we've prepared for the state elimination algorithm by adding in a new start
state qstart and a new accept state qacc:

We'd like you to use the state elimination algorithm to produce a regular expression for L.

i. Run two steps of the state elimination algorithm on the above automaton. Specifically, first re-
move state q₁, then remove state q₂. Show your result at this point.

ii. Finish the state elimination algorithm. What regular expression do you get for L?

iii. Without making reference to the original automaton given above, give an intuitive explanation for
how the regular expression you found in part (ii) works.

Problem Four: Distinguishable Strings
The Myhill-Nerode theorem is one of the trickier and more nuanced theorems we've covered this quarter.
This question explores what the theorem means and, importantly, what it doesn't mean.

Let Σ = {a, b} and let L = { w ∈ Σ* | |w| is even }.

i. Show that L is a regular language.

ii. Prove that there is a infinite set S ⊆ Σ* where there are infinitely many pairs of distinct strings
x, y ∈ S such that x ≢L y.

iii. Prove that there is no infinite set S ⊆ Σ* where all pairs of distinct strings x, y ∈ S satisfy x ≢L y.

The distinction between parts (ii) and (iii) is important for understanding the Myhill-Nerode theorem. A
language is nonregular not if you can find infinitely many pairs of distinguishable strings, but rather if you
can find infinitely many strings that are all pairwise distinguishable. This is a subtle distinction, but it's an
important one!

Problem Five: Balanced Parentheses
Consider the following language over Σ = {(,)}:

L₁ = { w ∈ Σ* | w is a string of balanced parentheses }

For example, we have () ∈ L₁, (()) ∈ L₁, (()())() ∈ L₁, ε ∈ L₁, and (())((()())) ∈ L₁, but)(∉ L₁,
(() ∉ L₁, and ((()))) ∉ L₁. This question explores properties of this language.

i. Prove that L₁ is not a regular language. One consequence of this result – which you don't need to
prove – is that most languages that support some sort of nested parentheses, such as most pro-
gramming languages and HTML, aren't regular and so can't be parsed using regular expressions.

Let's say that the nesting depth of a string of balanced parentheses is the maximum number of unmatched
open parentheses at any point inside the string. For example, the string ((())) has nesting depth three,
the string (()())() has nesting depth two, and the string ε has nesting depth zero.

Consider the language L₂ = { w ∈ Σ* | w is a string of balanced parentheses and w's nesting depth is at
most four }. For example, ((())) ∈ L₂, (()()) ∈ L₂, and (((())))(()) ∈ L₂, but ((((())))) ∉ L₂ be-
cause although it's a string of balanced parentheses, the nesting goes five levels deep.

ii. Design a DFA for L₂, showing that L₂ is regular. A consequence of this result is that while you
can't parse all programs or HTML with regular expressions, you can parse programs with low
nesting depth or HTML documents without deeply-nested tags using regexes. Please submit this
DFA using the DFA editor on the course website and tell us on GradeScope who submitted it.

iii. Look back at your proof from part (i) of this problem. Imagine that you were to take that exact
proof and blindly replace every instance of “L₁” with “L₂.” This would give you a (incorrect) proof
that L₂ is nonregular (which we know has to be wrong because L₂ is indeed regular.) Where would
the error be in that proof? Be as specific as possible.

iv. Intuitively, regular languages correspond to problems that can be solved using only finite memory.
Using this intuition and without making reference to DFAs, NFAs, or the Myhill-Nerode theo-
rem, explain why L₁ is nonregular while L₂ is regular.

Problem Six: Tautonyms
A tautonym is a word that consists of the same string repeated twice. For example, the words “bulbul,”
“caracara,” and “dikdik” are all tautoynms (the first two are species of birds, and the last is the cutest ani -
mal you'll ever see), as is the word “hotshots” (people who aren't very fun to be around). Let Σ = {a, b}
and consider the following language:

L = { ww | w ∈ Σ* }

This is the language of all tautonyms over Σ. Below is an incorrect proof that L is not regular:

Proof: Let S = { an | n ∈ ℕ }. This set is infinite because it contains one string for each natural
number. We claim that any two strings in S are distinguishable relative to L. To see this, con-
sider any two distinct strings am and an in the set S, where m ≠ n. Then amam ∈ L but anam ∉ L,
so am ≢L an. This means that S is an infinite set of strings that are pairwise distinguishable rel-
ative to L. Therefore, by the Myhill-Nerode theorem, L is not regular. ■

i. What's wrong with this proof? Be specific.

ii. Although the above proof is incorrect, the language L isn't regular. Prove this.

Problem Seven: State Lower Bounds
The Myhill-Nerode theorem we proved in lecture is actually a special case of a more general theorem
about regular languages that can be used to prove lower bounds on the number of states necessary to con-
struct a DFA for a given language.

Let L be a language over Σ. Suppose there's a finite set S such that any two distinct strings x, y ∈ S are dis-
tinguishable relative to L (that is, x ≢L y). Prove that any DFA for L must have at least |S| states. (You
sometimes hear this referred to as lower-bounding the size of any DFA for L.)

Problem Eight: Closure Properties Revisited
When building up the regular expressions, we explored several closure properties of the regular languages.
This problem explores some of their nuances.

The regular languages are closed under complementation: If L is regular, so is L.

i. Prove or disprove: the nonregular languages are closed under complementation.

The regular languages are closed under union: If L₁ and L₂ are regular, so is L₁ ∪ L₂.

ii. Prove or disprove: the nonregular languages are closed under union.

We know that the union of any two regular languages is regular. Using induction, we can show that the
union of any finite number of regular languages is also regular. As a result, we say that the regular lan-
guages are closed under finite union.

An infinite union is the union of infinitely many sets. For example, the rational numbers can be expressed
as the infinite union { x/1 | x ∈ ℤ } ∪ { x/2 | x ∈ ℤ } ∪ { x/3 | x ∈ ℤ } ∪ … out to infinity.

iii. Prove or disprove: the regular languages are closed under infinite union.

Extra Credit Problem: Generalized Fooling Sets (1 Point Extra Credit)
In Problem Seven, you saw how to use distinguishability to lower-bound the size of DFAs for a particular
language. Unfortunately, distinguishability is not a powerful enough technique to lower-bound the sizes of
NFAs. In fact, it's in general quite hard to bound NFA sizes; there's a $1,000,000 prize for anyone who
finds a polynomial-time algorithm that, given an arbitrary NFA, converts it to the smallest possible equiv-
alent NFA!

Although it's generally difficult to lower-bound the sizes of NFAs, there are some techniques we can use
to find lower bounds on the sizes of NFAs. Let L be a language over Σ. A generalized fooling set for L is
a set ℱ ⊆ Σ* × Σ* is a set with the following properties:

• For any (x, y) ∈ ℱ, we have xy ∈ L.

• For any distinct pairs (x₁, y₁), (x₂, y₂) ∈ ℱ, we have x₁y₂ ∉ L or x₂y₁ ∉ L (this is an inclusive OR.)

Prove that if L is a language and there is a generalized fooling set ℱ for L that contains n pairs of strings,
then any NFA for L must have at least n states.

